Effective Lagrangians and Physics Beyond the Standard Model

S. Dawson

TASI06

Lecture 5

SM Higgs Boson

 Theory is perturbatively consistent only within chimney

Theory is perturbatively unitary

At all energies if:

$$M_h < 800 \text{ GeV}$$

 For infinitely massive (or no) Higgs at energies less than:

E_c~1.7 TeV

The theory works

Effective Field Theory

- Effective Lagrangian
- O_i contain light fields
- $L = L_{SM} + \sum_{i=1}^{\infty} \frac{c_i}{\Lambda^2} O_i^6 + \dots$
- All information about heavy degrees of freedom in c_i
- Categorize operators by their dimensions, d_i
- Operators with $d_i>4$ suppressed by powers of E/Λ

Operating assumption is that $\Lambda >> M_Z$

Counting Dimensions

- Fermions: dim=3/2
- Gauge bosons/scalars: dim=1
- ∂: dim=1
- SM Lagrangian is dimension 4
- Only 1 SU(2) x U(1) invariant dimension 5 operator:
 - $-L_5=(LΦ)(LΦ)/Λ→(Lν)(Lν)/Λ→m_ννν$
 - $-\Lambda \sim 10^{15} \text{ GeV}$

Many Possible Dimension-6 Operators

$$\mathcal{L}_{6} = QQQL, L\sigma^{\mu\nu}W_{\mu\nu}He,$$

$$W^{\mu}_{\nu}W^{\nu}_{\lambda}B^{\lambda}_{\mu}, (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), \cdots$$

Philosophy: We don't know what the physics at high energy scales is

We assume it respects the SU(2) x U(1) symmetry

Little Hierarchy Problem

- Much possible new physics is excluded at the TeV scale
 - Look at possible dimension 6 operators
 - Many more operators than shown here
 - Limits depend on what symmetry is violated

New operators Experimental limits $\frac{(\overline{ds})(\overline{ds})}{\Lambda^{2}} \qquad \Lambda > 1000 \ TeV$ $\frac{m_{b}(\overline{s} \sigma_{\mu\nu} F^{\mu\nu} b)}{\Lambda^{2}} \qquad \Lambda > 50 \ TeV$ $\frac{(h^{+}D_{\mu}h)^{2}}{\Lambda^{2}} \qquad \Lambda > 5 \ TeV$ $\frac{(D^{2}h^{+}D^{2}h}{\Lambda^{2}} \qquad \Lambda > 5 \ TeV$

New Physics typically must be at scale $\Lambda > 5$ TeV

No Higgs?

- Remember, Higgs is used to unitarize the SM
- Unitarity violated at 1.7 TeV without a Higgs
- This sets the scale for something new
- Construct the Standard Model without a Higgs
 - Higgs is only piece we haven't seen experimentally

Standard Model Revisited

Scalar sector described by SU(2) doublet

$$\Phi = \frac{(v+h)}{\sqrt{2}} e^{iw^a \sigma^a/v} \qquad V = \frac{\lambda}{4} \left[Tr(\Phi^+ \Phi) - \frac{v^2}{2} \right]^2$$

 Scalar potential invariant under global SU(2)_L x SU(2)_R symmetry:

$$\Phi \to L\Phi R^+$$

Global symmetry broken by

$$<\Phi>=\frac{v}{\sqrt{2}}$$

Higgsless Standard Model

 Construct most general effective Lagrangian with 2 derivatives describing Goldstone bosons with global SU(2)_L x SU(2)_R symmetry

• This construction is expansion in powers of E^2/Λ^2

$$L = \frac{v^2}{4} Tr \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{+} \right] \qquad \Sigma = e^{i w^{a} \sigma^{a} / v}$$

Assume $\delta \rho = 0$

Higgsless Standard Model, #2

Gauge theory:
$$L = \frac{v^2}{4} Tr \left[D_{\mu} \Sigma D^{\mu} \Sigma^{+} \right] + (kinetic)$$

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - igW_{\mu}\sigma/2\Sigma + ig'B_{\mu}\Sigma\sigma^{3}/2$$

Unitary gauge is $\Sigma=1$

This is SM with massive gauge bosons

At $O(E^2/\Lambda^2)$ gauge couplings are identical to those of the SM

Higgsless Standard Model, #3

- Add $O(E^4/\Lambda^4)$ operators
 - Contributions from $O(E^2/\Lambda^2)$ operators generate infinities (SM is not renormalizable without Higgs)
 - These infinities absorbed into definitions of $O(E^4/\Lambda^4)$ operators
 - Can do this at every order in the energy expansion
- Coefficients are unknown but limited by precision measurements
 - A particular model of high scale physics will predict these coefficients
- The O(E⁴/Λ⁴⁾ terms will change 3 and 4 gauge boson interactions

WW scattering at LHC

- Four gauge boson interactions are sensitive to unitarity violating physics (Vector boson fusion)
- Look for W+W⁻, ZZ, Zγ, Wγ pair production in vector boson fusion
 - Consistent expansion in powers of E^2/Λ^2

WW Scattering without a Higgs

• Add terms of $O(E^4/\Lambda^4)$ to effective L

$$L = ... + L_1 \left(Tr \left(D_{\mu} \Sigma D^{\mu} \Sigma^{+} \right) \right)^2 + L_2 \left(Tr \left(D_{\mu} \Sigma D^{\nu} \Sigma^{+} \right) \right)^2 +$$
 LHC

- This Lagrangian violates unitarity
- n derivative vertex ≈Eⁿ/Λⁿ⁻⁴
- This is counting experiment (no resonance)
 - Example: Search for anomalous WWγγ vertex through gauge bosol fusion

Normalized to show difference in shape of signal and background

Hard!

Contruct Models without Higgs

- Problems with unitarity
- Something must come in to conserve unitarity if theory is to remain perturbative
- Extra dimension "Higgsless" models have tower of Kaluza Klein particles
 - These look like heavy copies of the W, Z, and photon

Models without Higgs have difficulties with Unitarity

 Without Higgs, W-boson scattering grows with energy

$$A \sim G_F E^2$$

- Violates unitarity at 1.7 TeV
- SM Higgs has just the right couplings to restore unitarity
- Extra D models have infinite tower of Kaluza-Klein states
- Need cancellations both in E² and E⁴ contributions to amplitudes
- Arrange couplings to make this happen

Higgsless phenomenology

- Tower of KK vector bosons
 - Can be produced at LHC, e⁺e⁻
- Tension between:
 - Unitarity wants light KK
 - precision EW wants heavy KK

1.000 0.500 ΔS ΔU 0.000 0.000 ΔT Dayoudiasl, Hewett, Lillie, Rizzo, hep-ph/0312193

J=0 partial wave for WW scattering

Foadi, Gopalakrishna, Schmidt, hep-ph/0312324

Heavier $\kappa \rightarrow$ heavier KK gauge bosons

Experimental Signatures of Higgsless Models

- Look for massive W, Z, γ like particles in vector boson fusion
 - Need small couplings to fermions to avoid precision EW constraints
 - Narrow resonances in WZ channel

LHC

Different resonance structure from SM!

Birkedal, Matchev, Perelstein, hep-ph/0412278

Gauge Boson Pair Production

- W+W-, W±γ, etc, production sensitive to new physics
- Expect effects which grow with energy

$$- A_t \sim (...)(s/v^2) + O(1)$$

$$- A_s \sim -(...)(s/v^2) + O(1)$$

$$-\sigma_{TOT} \sim O(1)$$

Remember $e^+e^- \rightarrow W^+W^-$

Non-SM 3 gauge boson couplings spoil unitarity cancellation

Consider Non-SM W+W-V Couplings

 Most general gauge and Lorentz invariant couplings with C and P separately conserved

$$\frac{L_{VVV}}{-ig_{V}} = g_{1}^{V} (W_{\mu\nu}^{+} W^{-\mu} V^{\nu} - W_{\mu}^{+} V_{\nu} W^{-\mu\nu}) + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}}$$

- Where V=Z,γ
 - $-\lambda_V$ higher order in derivative expansion (often ignored)
 - SM: $\kappa_{\gamma} = \kappa_{Z} = g_{1}^{Z} = g_{1}^{\gamma} = 1$, $\lambda_{V} = 0$
 - EM gauge invariance requires ∆g₁^γ=0
- Often assume SU(2)_c and neglect higher dimension operators
 - $-g_1^z = \kappa_z + \tan^2\theta_W \Delta \kappa_\gamma$
 - $-\lambda_{V}=\lambda_{\gamma}$

A model of BSM will specify these anomalous couplings

What size effects can we hope to see?

- NLO corrections to W+W-known
- Can hope to see small BSM effects

– At the Tevatron:
$$p\overline{p} o W^+W^- o e^+e^-p_T^{miss}$$

Theory
$$\sigma_{LO} = 62 fb$$

$$\sigma_{NLO} = 82 fb$$

$$p_T^e > 20 GeV$$

$$|\eta_e| < 2.5, |\eta_e| < 2.5,$$

With Non-SM couplings:

$$\Delta g_1^Z = .5, \lambda_Z = \lambda_{\gamma} = .1, \Delta \kappa_Z = \Delta \kappa_{\gamma} = .3$$

$$\sigma_{LO} = 83 fb$$

$$\sigma_{NLO} = 107 fb$$

$$p_T^e > 20 GeV$$
 $\left| \eta_e \right| < 2.5, \left| \eta_e \right| < 2.5,$
 $p_T^{miss} > 20 GeV$
 $p_T(jet) > 20 GeV$

But don't precision measurements require a light Higgs?

- Higgs mass limits from precision measurements assume SM
 - Suppose the SM is effective low energy theory valid to scale Λ
 - Include all operators allowed by SU(3) x SU(2) x U(1) gauge symmetry (and assume a light Higgs)
 - Include effects of new operators in fits

$$L = L_{SM} + \sum \frac{c_i}{\Lambda^2} O_i^6 + \dots$$

Higgs can be heavy with new physics

> $M_h \approx 450\text{-}500$ GeV allowed with large isospin violation, ΔT

Constructing actual models with this feature is hard

Much Activity in EW Scale Model Building

- Remove Higgs completely
 - Dynamical symmetry breaking
 - Higgsless models in extra D
- Lower cut-off scale
 - Large extra dimensions
- Force cancellations of quadratic contributions to Higgs mass
 - SUSY
 - Little Higgs
 - Make Higgs component of gauge field in extra D

Much more satisfying to have a model than just an effective theory!

Symmetries maintain cancellations at higher order!

Little Higgs Models

New particles at scale $f \sim \Lambda$ cancel SM quadratic divergences

Cancellation from same spin particles

Need symmetry to enforce cancellation

- Heavy W_H,Z_H,A_H cancel gauge loops
- Scalar triplet cancels Higgs loop
- Vector-like charge 2/3 quark cancels top loop

More on little Higgs

- Global Symmetry, G (SU(5))
 - •Broken to subgroup H (SO(5)) at scale $4\pi f$
- Higgs is Goldstone Boson of broken symmetry
 - •Effective theory below symmetry breaking scale
- Gauged subgroups of G ([SU(2)xU(1)]²) contain SM
- Higgs gets mass at 2 loops (naturally light)
- •Freedom to arrange couplings of 1st 2 generations of fermions (their quadratic divergences small)
 - •Heavy W's, Z's, γ's
 - Heavy top
 - •Extended Higgs sector

Little Higgs & Precision EW

Mixing of heavy-light gauge bosons leads to problems with precision measurements

$$\frac{\delta\Gamma_Z}{\Gamma_Z} \approx 1 + (...) \frac{v^2}{f^2}$$

$$\frac{\delta M_W^2}{M_W^2} \approx 1 + (...) \frac{v^2}{f^2}$$

- Many models
- Triplets cause problems with ρ
 parameter unless VEV small
- Typically, $f \ge 3 4 TeV$

Chen& Dawson, hep-ph/0311032

New Phenomenology in Little Higgs Models

- Drell-Yan production of Z_H
 - EW precision limits prefer cot θ≈.2 (Heavy-light gauge mixing parameter)
 - BRs very different from SM
 - $M_{ZH}^2 \approx M_Z^2 f^2 / v^2$
- Look for heavy tops
- Look for non-SM 3 gauge boson vertices

Han, Logan, McElrath, Wang, hep-ph/0301040

Higgs production & decay in Little Higgs Models

- Rate could be reduced by ≈25%
- Have to see new particles
 - Z_H , W_H , γ_H

•Growing realization that EWSB isn't just Higgs discovery, but requires finding spectrum of new particles!

This is theoretically allowed region

Han, Logan, McElrath, Wang, hep-ph/0302188

Possibilities at the LHC

- We find a light Higgs with SM couplings and nothing else
 - How to answer our questions?
- We find a light Higgs, but it doesn't look SM like
 - Most models (SUSY, Little Higgs, etc) have other new particles
- We don't find a Higgs (or any other new particles)
 - How can we reconcile precision measurements?
 - This is the hardest case

Science Timeline

Tevatron

LHC

LHC Upgrade

LC

2004

2007

2012

2015?

This is the decade of the hadron colliders!